Features of High Current Nanosecond Discharge in Mixture of High Pressure CuInSe2 Chalkopyrite Vapor and Argon
Shuiabov Oleksander,
Mynya Oleksander,
Chyhin Vasyl,
Grytsak Roksolana,
Malinina Antonina
Issue:
Volume 3, Issue 2, December 2019
Pages:
37-41
Received:
5 August 2019
Accepted:
20 November 2019
Published:
17 December 2019
Abstract: The features of an over-voltage high-current nanosecond discharge in argon of high pressure (р=202 kPa) ignited between the electrodes of CuInSe2 compound are presented. In the sputtering of massive chalcopyrite electrodes, the CuInSe2 pair gets into the discharge plasma. Main products of dissociation of chalcopyrite molecules in the over-voltage nanosecond discharge are established. They were in excited and ionized states and in the spectra of plasma radiation they were predominantly represented by atoms and single charged ions of copper and indium. It is proposed to use the spectral lines of copper and indium to control the process of thin films of chalcopyrite deposition in a real time. Using gas-discharge method thin films of chalcopyrite are synthesized on quartz substrates. These films effectively absorb the radiation falling on their surface in the spectral range of 200-800 nm. This property opens the prospects for their application in photovoltaic devices.
Abstract: The features of an over-voltage high-current nanosecond discharge in argon of high pressure (р=202 kPa) ignited between the electrodes of CuInSe2 compound are presented. In the sputtering of massive chalcopyrite electrodes, the CuInSe2 pair gets into the discharge plasma. Main products of dissociation of chalcopyrite molecules in the over-voltage...
Show More
Comparative Study of Physico-Mechanical Properties Between Okra and E-glass Fiber-Reinforced Polypropylene-based Composites
Kamrun Nahar Keya,
Nasrin Afroz Kona,
Ruhul Amin Khan
Issue:
Volume 3, Issue 2, December 2019
Pages:
42-49
Received:
8 October 2019
Accepted:
1 November 2019
Published:
18 December 2019
Abstract: Okra fiber (OF) reinforced polypropylene (PP) matrix composites (45 wt% fiber) were fabricated using a compression molding technique. To fabricate the composite treated Okra fiber were used. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness of the composites were found to be 38.5 MPa, 0.68 GPa, 8.2%, 72.5 MPa, 5.56 GPa, 22.87 kJ/m2, and 97 (Shore-A), respectively. Then E-glass fiber (woven)-reinforced polypropylene-based composites (45 wt% fiber) were fabricated and the mechanical properties (TS, TM, Eb%, BS, BM, IS, hardness) were found 80 MPa, 5 GPa, 11%, 81 MPa, 10 GPa, 32 kJ/m2, and 97 (Shore-A), respectively. After that compared E-glass fiber/PP based composites mechanical properties with those of the OF/PP based composites mechanical properties. It was observed that E-glass fiber-based composites showed almost double mechanical properties compared to OF/PP based composite. Water absorption and elongation percentage at break showed different scenario and it was noticed from the experimental study that water absorption and elongation at break (%) of was higher than E-glass based composites. After the flexural test, fracture surfaces of the E-glass/PP and OF/PP composites were investigated using scanning electron microscope (SEM) and the results revealed that E-glass fiber reinforced based composites matrix adhesion less than the E-glass fiber reinforced based composites.
Abstract: Okra fiber (OF) reinforced polypropylene (PP) matrix composites (45 wt% fiber) were fabricated using a compression molding technique. To fabricate the composite treated Okra fiber were used. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness of the c...
Show More